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Occupational or environmental exposures to heavy metals produce several adverse health effects. The
common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress
that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the
activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antiox-
idant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally
used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcu-
min against heavy metals liver injury. Curcumin has shown, in clinical and preclinical studies, numerous
biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic
effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by
arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation
and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against
mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy
metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce
the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as
a potential protective agent against liver damage induced by heavy metals.

� 2014 Published by Elsevier Ltd.
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1. Introduction

Heavy metals are commonly defined as those metallic elements
with high atomic weight such as arsenic (As), cadmium (Cd),
chromium (Cr), copper (Cu), lead (Pb) and mercury (Hg) that may
damage living organisms at low concentrations and that tend to
accumulate in the food chain (IUPAC, 2002; Stummann et al.,
2008). They enter to the human body by ingestion, inhalation or
through the skin and their presence may cause serious toxicity
(Jarup, 2003; Alissa and Ferns, 2011). Sources of exposure to these
metals include occupational exposure and environmental contam-
ination from industrial production with poor emission and disposal
practices (Ahalya et al., 2003; CDC, 2009; Nobuntou et al., 2010;
Martinez-Zamudio and Ha, 2011). The principal metal emission
sources come from the following industries: petrochemical,
extractive, metallurgic (foundry and metallurgy), mechanic (gal-
vanic processes, painting), chemical (paints, plastic materials)
and ceramic (Ziemacki et al., 1989). Exposure to compounds con-
taining heavy metals is known to be toxic, mutagenic, teratogenic
83
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87
and carcinogenic to human beings and diverse animals (Fig. 1)
(Jomova and Valko, 2011).

Toxic manifestations of these metals are attributed primarily to
oxidative stress (Flora et al., 2008). Oxidative stress is defined as an
imbalance between production of free radicals and reactive metab-
olites, so-called oxidants, and their elimination by antioxidant
systems. This imbalance leads to damage of important biomole-
cules and organs with potential impact on the whole organism
(Duracková, 2010). The associated DNA, protein, and lipid damage
may underlie liver diseases as a key pathophysiological force. The
above may also be related to chronic liver injury, hepatic inflam-
mation, fibrosis and to hepatocellular carcinoma (Tanikawa and
Torimura, 2006; Vera-Ramirez et al., 2013). The liver is an impor-
tant organ to be considered when the effects of pollutants are
investigated, since this organ plays a central role in the metabolism
and detoxification of biological substances. Also, most of the sub-
stances absorbed by the intestine passes first through the liver
where toxins and heavy metals may accumulate (Saïdi et al., 2013).

Chromium and copper undergo redox-cycling reactions, while
the primary route for the toxicity of arsenic, cadmium, lead and
mercury is the depletion of glutathione (GSH) and bonding to sulf-
hydryl groups of proteins. But the unifying factor in determining
toxicity and carcinogenicity for all these metals is the generation
of reactive oxygen species (ROS) such as the hydroxyl radical
e. Food
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Fig. 1. Main organs and systems affected by environmental or occupational
exposure to heavy metals.
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(HO�), superoxide radical (O2
��) or hydrogen peroxide (H2O2). The

excessive ROS generation overwhelms the cell’s capacity to main-
tain a reduced state (Ercal et al., 2001; Valko et al., 2005, 2006).
Oxidative stress induced by metal exposure leads to the activation
of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-
associated protein 1/antioxidant response elements (Nrf2/Keap1/
ARE) pathway (Rubio et al., 2010), through the activation of
numerous transducers such as mitogen-activated protein kinases
(MAPK, ERK, p38), protein kinase C (PKC), and phosphatidylinositol
3 kinase (PI3K) which phosphorylate both Nrf2 and Keap1 (Kang
et al., 2000; Yu et al., 2000; Kong et al., 2001; Huang et al.,
2002). Also, reactive electrophiles directly attack the sulfhydryl-
rich Keap1 protein, leading to conformational changes in their
structure (Dinkova-Kostova et al., 2002). The cumulative impact
of these events is the stabilization and activation of Nrf2 and tran-
scriptional upregulation of antioxidant genes protecting cells from
heavy metal toxicity and carcinogenesis from ROS and electro-
philes (Kaspar et al., 2009; Kensler et al., 2007; Park and Seo,
2011; Simmons et al., 2011; Lau et al., 2013).

Hence application of an external source of antioxidants may
offer some protection against oxidative stress. The term antioxi-
dant refers to a wide spectrum of compounds, which are able to
donate electrons and neutralize free radicals, resulting in the pre-
vention of cell injuries (Lobo et al., 2010; Saeidnia and Abdollahi,
2013). In consequence, the search for effective, nontoxic, natural
compounds with antioxidant activity has been intensified in recent
years (Pérez-De la Cruz et al., 2006; Tapia et al., 2012; Negrette-
Guzmán et al., 2013). In particular, curcumin (a dietary spice
isolated from Curcuma longa) has become one of the most cited
antioxidants due to the multitude of beneficial health effects that
have been studied and established by the scientific community
(Kumar and Maliakel, 2007). However, there is little information
about the protective effects of curcumin against noxious effects
caused by exposure to heavy metals in murine models, including
those related to hepatic damage. Thus, the purpose of this paper
is to review scientific evidence regarding oxidative stress, Nrf2,
and hepatotoxicity induced by heavy metals, as well as the hepato-
protective effects of curcumin.
Please cite this article in press as: García-Niño, W.R., Pedraza-Chaverrí, J. Prote
Chem. Toxicol. (2014), http://dx.doi.org/10.1016/j.fct.2014.04.016
2. Curcumin

Curcumin or diferuloylmethane (1,7-bis[4-hydroxy-3-
methoxyphenyl]-1,6-heptadiene-3,5-dione) is a hydrophobic poly-
phenol compound naturally concentrated in the rhizome of the
herb Curcuma longa, commonly known as turmeric (Altenburg
et al., 2011). Traditionally, turmeric has been used in therapeutic
preparations against biliary disorders, anorexia, coryza, herpes zos-
ter, acne, cough, urinary tract diseases, diabetic wounds, hepatic
disorder, rheumatism and sinusitis (Ammon and Wahl, 1991;
Chainani-Wu, 2003; Chattopadhyay et al., 2004). At present, tur-
meric is used as a dietary spice, and by the food industry as addi-
tive, flavoring, preservative and as coloring agent in foods and
textiles (FAO, 2004; Aggarwal et al., 2007; Basnet and Skalko-
Basnet, 2011). Curcumin is a major component of turmeric and it
has been shown to exhibit several activities including antioxidant
(Iqbal et al., 2003; Surh, 2003; Dairam et al., 2008; Al-Jassabi
et al., 2012), antimicrobial (Çıkrıkçı et al., 2008; Tajbakhsh et al.,
2008), anti-inflammatory (Jurenka, 2009; Bereswill et al., 2010),
antiviral (Barthelemy et al., 1998; Kutluay et al., 2008) and anti-
carcinogenic (Aggarwal et al., 2003, 2006; Wang et al., 2009;
Youns et al., 2010; Das and Vinayak, 2012; Huang et al., 2013).

Curcumin and turmeric products have been characterized as
safe by the Food and Drug Administration (FDA) in the USA, the
Natural Health Products Directorate of Canada and the Joint FAO/
WHO Expert Committee on Food Additives of the Food and Agricul-
ture Organization/World Health Organization (NCI, 1996). Over
2400 metric tons of turmeric are imported into the USA (Sharma
et al., 2005). The average intake of turmeric in the Indian diet is
approximately 2–2.5 g for a 60 kg individual, which corresponds
to a daily intake of approximately 60–100 mg of curcumin (Shah
et al., 1999; Lao et al., 2006; Tayyem et al., 2006). In addition, cur-
cumin has entered scientific clinical trials at the phase I, II and III
levels for its therapeutic efficacy, even at doses as high as 12 g/
day during 3 months (Cheng et al., 2001; Hsu and Cheng, 2007;
NIH, 2007; Dhillon et al., 2008). However, curcumin exhibits poor
bioavailability and the hydrophobic nature of curcumin is one of
the main reasons for this poor water-solubility/suspension
capacity (Anand et al., 2008; Kidd, 2009). To improve the solubility,
bioavailability and bioactivity of curcumin, numerous approaches
have been undertaken. These include (1) curcumin analogues:
natural analogues from turmeric such as demethoxycurcumin,
bisdemethoxycurcumin or tetrahydrocurcumin (Grynkiewicz and
Ślifirski, 2012; Lin et al., 2012; Bhullar et al., 2013), natural ana-
logues occurring in nature, like cassumunins or dehydrozyngerone
(Nagano et al., 1997; Yogosawa et al., 2012) and synthetic ana-
logues (Al-Hujaily et al., 2011; Chen et al., 2011; Yadav et al.,
2012b), and (2) curcumin formulations: adjuvants (Sehgal et al.,
2011; Banji et al., 2013), nanoparticles (Gangwar et al., 2012; Liu
et al., 2012), liposomes (Taylor et al., 2011; Dhule et al., 2012),
micelles (Gong et al., 2013; Liu et al., 2013a,b) and phospholipid
complexes (Lin et al., 2009).

2.1. Therapeutic potential

Despite its low bioavailability, numerous clinical studies have
suggested that curcumin has therapeutic efficacy against various
human diseases (Gupta et al., 2013), including cancer (Garcea
et al., 2004, 2005), diabetes (Balasubramanyam et al., 2003),
Alzheimer’s disease (Ringman et al., 2012), familial adenomatous
polyposis (Cruz-Correa et al., 2006), inflammatory bowel disease
(Holt et al., 2005), rheumatoid arthritis (Deodhar et al., 1980;
Chandran and Goel, 2012), hypercholesterolemia (Soni and
Kuttan, 1992), liver injury (Kim et al., 2013), atopic asthma (Kim
et al., 2011), psoriasis (Kurd et al., 2008), osteoarthritis (Belcaro
et al., 2010), neurological diseases (Sanmukhani et al., 2013),
ctive effect of curcumin against heavy metals-induced liver damage. Food
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chronic anterior uveitis (Lal et al., 1999; Allegri et al., 2010), human
immunodeficiency virus infection (James, 1994) and cystic fibrosis
(Henke, 2008). Enhancing curcumin’s bioavailability in the near
future is will enable this promising natural product to be investi-
gated as a therapeutic agent for treatment of human disease
(Anand et al., 2007).

2.2. Antioxidant properties

Curcumin is a bis-a,b-unsaturated b-diketone and the b-diketo
moiety undergoes keto-enol tautomerism (Fig. 2). Under acidic and
neutral conditions, the bis-keto form predominates, whereas the
enol form is found above pH 8 (Wang et al., 1997; Jovanovic
et al., 1999). The enol form makes an ideal chelator of positively
charged metals (Fig. 3), which are often found in the active sites
of target proteins (Baum and Ng, 2004). Curcumin chelating
potential of the type 1:1 and 1:2 have been reported for several
metal cations (Gupta et al., 2011). The presence of the phenolic,
b-diketone, as well as the methoxy groups contribute to the free-
radical-scavenging activity of curcumin (Esatbeyoglu et al., 2012).
Curcumin has demonstrated scavenging activity against a variety
of ROS, including O2

��, HO�, peroxyl radical (ROO�), nitrogen dioxide
radical (NO2

� ), 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH�),
2,20-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS�+) and
N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD�+) rad-
ical (Reddy and Lokesh, 1994; Fujisawa et al., 2004; Ak and Gülcin,
2008; Trujillo et al., 2013). On the other hand, curcumin may pro-
tect cells from oxidative stress indirectly by inducing Nrf2 (Fig. 4)
(Tapia et al., 2012, 2013; Correa et al., 2013; González-Reyes et al.,
Fig. 2. Curcumin keto-enol tautomerism. The presence of the phenolic, b-diketone, as
curcumin. The enol form makes an ideal chelator of positively charged metals. While the
provide Nrf2 inducer activity to curcumin.

Fig. 3. Curcumin chelating potential for

Please cite this article in press as: García-Niño, W.R., Pedraza-Chaverrí, J. Prote
Chem. Toxicol. (2014), http://dx.doi.org/10.1016/j.fct.2014.04.016
2013). Nrf2 belongs to the CNC (cap ‘n’ collar) family of b-Zip tran-
scription factors, together with p45 NF-E2, Nrf1 and Nrf3, and acts
through the formation of a heterodimer with one of the small Maf
proteins (Motohashi et al., 2002; Motohashi and Yamamoto, 2004).
Nrf2 is a redox-sensitive transcription factor which, under basal
conditions, is bound to its repressor Keap1 in the cytoplasm
(Copple et al., 2008; Singh et al., 2010; Uruno and Motohashi,
2011; Buelna-Chontal and Zazueta, 2013). Keap1 serves as an
adaptor protein between Nrf2 and the Cullin3-based E3-ligase
ubiquitylation complex, with its N-terminal BTB leading to ubiqui-
tylation of Nrf2 and subsequent degradation by the 26S protea-
some (Cullinan et al., 2004; Sinha et al., 2013). Curcumin
contains two Michael reaction acceptor functionalities in its mole-
cule that can modify the cysteine residues of Keap1 and promote a
conformational change in the Nrf2-Keap1 complex by Michael
addition to the thiols in Keap1 (Dinkova-Kostova et al., 2001;
Balogun et al., 2003), thereby releasing Nrf2 and allowing it to
translocate into the nucleus and bind as a heterodimer to ARE in
DNA to initiate target gene expression and increase the expression
of phase II enzymes (Dinkova-Kostova and Talalay, 1999, 2008;
Hong et al., 2005). Dinkova-Kostova and Talalay, 1999 identified
that the presence of keto-enol functionality and the aromatic ring
system must be present to provide Nrf2 inducer activity to curcu-
min. In this way, curcumin upregulates genes that contain AREs in
their promoters, including superoxide dismutase (SOD), catalase
(CAT) (Shukla et al., 2003), glutathione peroxidase (GPx) (Piper
et al., 1998), glutathione reductase (GR), glutathione-S-transferase
(GST) (Oetari et al., 1996), heme oxygenase 1 (HO-1) (Balogun
et al., 2003), NADPH:quinone oxidoreductase 1 (NQO1), glutamate
well as the methoxy groups contributes to the free-radical-scavenging activity of
presence of keto-enol functionality and the aromatic ring system must be present to

metallic and semi metalic cations.

ctive effect of curcumin against heavy metals-induced liver damage. Food
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Fig. 4. General scheme for the induction of gene expression through Keap1/Nrf2/ARE pathway. Nrf2 is a redox-sensitive transcription factor which, under basal conditions, is
bound to its repressor Keap1 in the cytoplasm. Keap1 serves as an adaptor protein between Nrf2 and the Cul3 complex, leading to ubiquitylation of Nrf2 and subsequent
degradation by the 26S proteasome. Oxidative stress induced by heavy metals exposure leads to the activation of the Nrf2/Keap1/ARE pathway. Protective effects of curcumin
were attributed to its ability to scavenge free radicals, to act as an chelating agent and/or its capacity to induce detoxifying enzymes by the up regulation of Keap1/Nrf2/ARE
pathway. Reactive oxygen species (ROS), Kelch-like ECH-associated protein 1 (Keap1); nuclear factor (erythroid-derived 2)-like 2 (Nrf2); antioxidant responsive element
(ARE); cullin-3 (Cul3); NADPH: quinone oxidoreductase 1 (NQO1); glutathione-S-transferase (GST); heme oxygenase-1 (HO-1).
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cysteine ligase catalytic (GCLC) and regulatory (GCLM) subunits
(Zhao et al., 2013) and aldose reductase (Kang et al., 2008).

Curcumin natural analogues from turmeric, other naturally-
occurring analogues, synthetic analogues, and curcumin formula-
tions exhibit different antioxidant activities in several in vitro
and in vivo models (Anand et al., 2008). Curcumin was more potent
than demethoxycurcumin and bisdemethoxycurcumin (Ahsan
et al., 1999; Jeong et al., 2006). However tetrahydrocurcumin,
one of the major metabolites of curcumin, exhibits greater antiox-
idant potential than curcumin in most models (Somparn et al.,
2007; Wongeakin et al., 2009). On the other hand, the information
about the antioxidant potential of curcumin in comparison with
other naturally-occurring analogues is scarce; as a result, it is
necessary to perform comparative studies about it. In this respect,
caffeic acid, ferulic acid and capsaicin have shown a higher relative
antioxidant potency than curcumin, but not eugenol or dehy-
drozyngerone in some models (Sharma, 1976; Joe and Lokesh,
1994; Rajakumar and Rao, 1994), indicating that an ortho-meth-
oxylated phenolic chromophore is necessary for antioxidant activ-
Please cite this article in press as: García-Niño, W.R., Pedraza-Chaverrí, J. Prote
Chem. Toxicol. (2014), http://dx.doi.org/10.1016/j.fct.2014.04.016
ity. Finally, molecular design and synthesis of synthetic curcumin
analogues have improved the antioxidant activity in contrast with
curcumin in many experimental conditions (Wright, 2002; Selvam
et al., 2005; Youssef et al., 2007).

2.3. Anti-hepatotoxic properties

The anti-hepatotoxic effects of curcumin against environmental
or occupational toxins are well documented, and they have been
attributed to its intrinsic antioxidant, anti-inflammatory,
anti-cholestatic, anti-fibrogenic and anti-carcinogenic properties.
Thus, curcumin has shown to protect the liver against injury and
fibrogenesis by suppressing hepatic inflammation, attenuating
hepatic oxidative stress (Mathuria and Verma, 2007), increasing
expression of the xenobiotic detoxifying enzymes (Iqbal et al.,
2003; Hemeida and Mohafez, 2008; Farghaly and Hussein, 2010),
inhibiting hepatic stellate cells activation (Zheng et al., 2007;
Priya and Sudhakaran, 2008) and supporting the mitochondrial
function (Subudhi et al., 2008). In addition, curcumin has shown
ctive effect of curcumin against heavy metals-induced liver damage. Food
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Table 1
Curcumin hepatoprotective properties.

Properties Outcome References

Antihepatotoxic ; Structural alterations Kaur et al. (2006), Dattani et al. (2010), Nayak and Sashidhar
(2010), Naik et al. (2011); Activities of ALT, AST, ALP, ACP, LDH and c-GT

; Total bilirubin
" Serum proteins

Antioxidant ; Lipid and protein oxidation Sugiyama et al. (2006), Wei et al. (2006), Farombi et al.
(2008); Srinivasan et al. (2008), Ramirez-Tortosa et al. (2009),
Bao et al. (2010), El-Agamy (2010), Yousef et al. (2010),
Guangwei et al. (2010), Subudhi and Chainy (2010), Tokaç
et al. (2013)

; ROS y RNS
" Expression and activities of SOD, CAT, GPx, GR, GST, HO-1, NQO1 and GCL
" GSH
" Induction of Nrf2
" Activity of cytochrome P450
" Mitochondrial function
" Activities of SDH and ATPase

Anti-cholestatic " Serum cholesterol Ahmed and Mannaa (2004), Said and El-Agamy (2009)
" Bile acids
" Direct and/or total bilirubin

Antifibrotic ; Activation of HSC Fu et al. (2008), Lin and Chen (2008) Pinlaor et al. (2010)
Vizzutti et al. (2010)" Activation of PPAR-c

; Expression of PDGF, EGF, TGF-b and their receptors
; Collagen aI(I), fibronectin, TIMP-1 and a-SMA

Anti-inflammatory ; Activation of NF-jB Nanji et al. (2003), Leclercq et al. (2004), Reyes-Gordillo et al.
(2007), Tu et al. (2012); Expression of TNF-a, IFN-c, IL-1b, IL-6, IL-12, IFN-c, MCP-1 and ICAM-1

; Expression of COX-2, iNOS
; Expression of TLR2 and TLR4

Antihepatocarcinogenic " Apoptosis Chuang et al. (2000a,b), Cao et al. (2007), Qian et al. (2011),
Wang et al. (2011); Expression of p53 and p21ras

; Expression of PCNA, p34cdc2 and cyclin E

Alanine aminotransferase (ALT); aspartate aminotransferase (AST); alkaline phosphatase (ALP); acid phosphatase (ACP); lactate dehydrogenase (LDH); c-glutamyl transferase
(c-GT); reactive oxygen species (ROS); reactive nitrogen species (RNS); superoxide dismutase (SOD); catalase (CAT); glutathione peroxidase (GPx); glutathione reductase
(GR), glutathione-S-transferase (GST); heme oxygenase-1 (HO-1); NADPH:quinone oxidoreductase 1 (NQO1); glutamate–cysteine ligase (GCL); glutathione (GSH); nuclear
factor (erythroid-derived 2)-like 2 (Nrf2); succinate dehydrogenase (SDH); adenosine triphosphatase (ATPase); hepatic stellate cells (HSC); peroxisome proliferator-activated
receptor-c (PPAR-c); platelet-derived growth factor (PDGF); epidermal growth factor (EGF); transforming growth factor-b (TGF-b); tissue inhibitor of metalloproteinase-1
(TIMP-1); a-smooth muscle actin (a-SMA); nuclear factor kappa-light-chain-enhancer of activated B cells (NF-jB); tumor necrosis factor-a (TNF-a); interleukin-1b, -6, -12
(IL-1b, IL-6, IL-12); interferon-c (IFN-c); monocyte chemotactic protein (MCP-1); intercellular adhesion molecule-1 (ICAM-1); cyclooxygenase-2 (COX-2); inducible nitric
oxiden synthase (iNOS); Toll like receptor-2, -4 (TLR2, TLR4); proliferating cell nuclear antigen (PCNA).
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protective effects against liver injury by upregulating the Keap1/
Nrf2/ARE pathway (Garg et al., 2008). These properties make cur-
cumin a potential protective agent against heavy metal-induced
liver injury (Table 1).
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3. Arsenic hepatotoxicity

Epidemiological studies have clearly indicated an association
between chronic arsenic exposure and abnormal liver function,
hepatomegaly, hepatoportal sclerosis, ascites, liver fibrosis and
cirrhosis (Nevens et al., 1990; Li et al., 2006; Flora et al., 2007;
Liu and Waalkes, 2008), from exposure to arsenic in the drinking
water (Santra et al., 1999; Guha Mazumder, 2005; Das et al.,
2012), environmental exposure to arsenic through burning high-
arsenic coal in interior stoves (Lu et al., 2001; Liu et al., 2002), or
when it is used as a therapeutic agent in the treatment of leukemia
(Hao et al., 2013; Wang et al., 2013a,b). The mechanisms by which
arsenic causes hepatotoxicity are not fully elucidated, however,
emerging evidence supports the role of oxidative stress and inflam-
mation in the pathogenesis of arsenic-induced organ damage
(Dong, 2002; Fouad et al., 2012). It has been shown that arsenite
and other arsenicals induce in liver the following alterations:
hepatocellular damage, hepatomegaly, oxidative stress (Guha
Mazumder, 2005; Nandi et al., 2005; Bashir et al., 2006; Xu et al.,
2013a,b), oxidative stress in liver mitochondria, inappropriate
mitochondrial permeability transition (Santra et al., 2007;
Hosseini et al., 2013), apoptosis (Zhang et al., 2013), hepatic stea-
tosis, inflammation, necrosis and fibrosis associated with hepatic
Please cite this article in press as: García-Niño, W.R., Pedraza-Chaverrí, J. Prote
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stellate cells (HSCs), NADPH oxidase and TGF-b/SMAD activation
(Ghatak et al., 2011; Pan et al., 2011) and liver carcinogenesis
(Liu et al., 2006; Waalkes et al., 2006; Xie et al., 2007).

3.1. Mechanism of action and Nrf2 induction

Evidence of oxidative stress has been detected in almost all the
experimental conditions of arsenic toxicity (Das et al., 2005;
Jomova et al., 2011). Arsenic may cause an increase in production
of ROS such as O2

��, H2O2, ROO�, singlet oxygen (1O2), nitric oxide
(NO�), dimethylarsinic peroxyl radical [(CH3)2AsOO�] and the
dimethylarsinic radical [(CH3)2As�] (Valko et al., 2006). It has been
suggested that mitochondria are the main target for arsenic-
containing compounds with a deflection of electrons from the
respiratory chain to generate ROS, inhibitory effects on cellular res-
piration, disruption of oxidative phosphorylation and concomitant
decrease in the cellular levels of adenosine triphosphate (ATP)
(Fluharty and Sanadi, 1962; Chen et al., 1986). ROS might also be
produced by cytosolic enzymes with peroxidase activity or during
the oxidation of As(III) to As(V) (Henkler et al., 2010). ROS produc-
tion by arsenic may result in an attack, not only against antioxidant
defenses and DNA, but also against membrane phospholipids,
which are very sensitive to oxidation, producing ROO� and then
malondialdehyde (MDA) (Escobar et al., 2010). On the other hand,
arsenic may also generate its toxic effects via bonding to sulfhydryl
groups of proteins and depletion of GSH (Hossain et al., 2000;
Jomova and Valko, 2011).

Nrf2 activation by arsenic induced-cell damage has been
reported in osteoblasts (Aono et al., 2003), human keratinocytes
ctive effect of curcumin against heavy metals-induced liver damage. Food
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(Pi et al., 2003; Endo et al., 2008; Zhao et al., 2011), embryonic
fibroblasts (He et al., 2006), human breast adenocarcinoma and
human urothelial cells (Wang et al., 2008), pancreatic b-cells
(Yang et al., 2012), endothelial cells (Wang et al., 2012) and skin
lesions in people exposed to inorganic arsenic-contaminated water
(Cordova et al., 2013). Aono et al. (2003) reported for the first time
that inorganic arsenic activates the transcription factor Nrf2 and Pi
et al. (2003) indicated that H2O2 is the mediator of arsenic-induced
nuclear Nrf2 accumulation. On the other hand, Jiang et al. (2009)
presented evidence that Nrf2 protects against liver and bladder
injury in mice treated with arsenic ameliorating the pathological
changes, DNA hypomethylation, oxidative DNA damage and apop-
totic cell death. Abiko et al. (2010) observed in human hepatocar-
cinoma cells (HepG2) a reduction of arsenic-induced cytotoxicity
through Nrf2/HO-1 signaling. Li et al. (2011) and Liu et al.
(2013a,b) demonstrated that sodium arsenite exposure in Chang
human hepatocytes increased Nrf2 protein levels, HO-1, NQO1
and GSH, as an adaptive cell defense mechanism against hepato-
toxicity. Recently, Anwar-Mohamed et al. (2013) showed that
methylated pentavalent arsenic metabolites are bifunctional
inducers as they increase cytochrome P450 1A1 (CYP1A1) through
activating the aryl hydrocarbon receptor (AhR) and NQO1 through
activating the Nrf2/Keap1/ARE signaling pathway in HepG2 cells.
420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456
3.2. Curcumin hepatoprotection

Curcumin has shown beneficial effects in clinical trials in
patients with arsenic-induced genotoxicity (Biswas et al., 2010b;
Roy et al., 2011) and arsenic-induced Bowen’s disease (Cheng
et al., 2001). Also, in studies in rodents and in in vitro models, cur-
cumin has shown protective effect against arsenic-induced geno-
toxicity (Mukherjee et al., 2007; Roy et al., 2008; Biswas et al.,
2010a; Tiwari and Rao, 2010), angiogenesis (Pantazis et al.,
2010), skin disorders (Zhao et al., 2013), reproductive toxicity
(Reddy et al., 2012; Khan et al., 2013), neurotoxicity (Yadav et al.,
2009, 2010, 2011), immunotoxicity (Khan et al., 2012; Sankar
et al., 2013c), nephrotoxicity (Sankar et al., 2013b) and hepatotox-
icity. Yousef et al. (2008) and El-Demerdash et al. (2009) treated
rats with sodium arsenite (5 mg/kg) and curcumin (15 mg/kg)
and they found that curcumin ameliorates arsenic-induced liver
damage preventing hepatomegaly and loss of body weight.
Curcumin treatment also preserved the structural integrity of the
hepatocellular membrane, prevented lipid peroxidation and the
decrease in the content of GSH and total proteins and changes in
the liver activity of the antioxidant enzymes GST, SOD and CAT.
This protective effect of curcumin was attributed to its ability to
scavenge free radicals (Ak and Gülcin, 2008), to induce detoxifying
enzymes (Dinkova-Kostova and Talalay, 1999; Messarah et al.,
2013) and to block thiol depletion (Donatus et al., 1990).

In contrast, Gao et al. (2013) demonstrated in female Kunming
mice exposed to sodium arsenite (10, 50, 100 mg/L) in drinking
water that the co-treatment with curcumin (200 mg/kg), reduced
the arsenic-induced hepatic injuries by supporting arsenic methyl-
ation and accelerating its urinary excretion, as a detoxification
process. Notably, these authors observed that treatment with cur-
cumin antagonized arsenic-induced hepatic oxidative stress by the
upregulation of Nrf2 and the induction of NQO1 and HO-1 proteins,
two typically recognized Nrf2 downstream targets. Similarly, cur-
cumin led to nuclear accumulation of Nrf2 protein and increased
the expression of ARE regulated genes in keratinocytes (HaCaT)
treated with sodium arsenite, augmenting the viability and sur-
vival of cells upregulating NQO1, HO-1, GCL, and GCLM genes
expression (Zhao et al., 2013). Previously, Farombi et al. (2008)
had found that liver protection by curcumin is mediated by Nrf2
activation.
Please cite this article in press as: García-Niño, W.R., Pedraza-Chaverrí, J. Prote
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In order to increase curcumin’s bioavailability, Yadav et al.
(2012a,b) prepared encapsulated curcumin chitosan nanoparticles
(nanocurcumin) and they treated rats with sodium arsenite (2 mg/
kg) plus curcumin (15 mg/kg) or nanocurcumin (1.5 and 15 mg/
kg). Co-administration of curcumin or nanocurcumin ameliorated
changes in hepatic oxidative stress parameters and re-established
the activity of SOD and CAT. Remarkably, nanocurcumin (15 mg/
kg) chelates arsenic more effectively than curcumin from blood,
liver, brain and kidneys and retained its ability as an antioxidant.
Nanocurcumin increases the efficacy and bioavailability of curcu-
min and reduces the dose required to exert protective effect against
arsenic toxicity. Recently, Sankar et al. (2013a) described that nano-
particle-encapsulated curcumin in poly(lactic-co-glycolic acid)
(PLGA) showed hepatoprotective effects against sodium arsenite-
induced oxidative damage. Rats were treated with sodium arsenite
(25 ppm) plus curcumin (100 mg/kg) or curcumin-nanoparticles
(100 mg/kg). In this case, curcumin and nano-encapsulated curcu-
min protected against arsenic-induced hepatotoxicity by reducing
lipid peroxidation, supporting GSH levels and SOD, CAT, GPx and
GR activities. However, curcumin-nanoparticles showed higher pro-
tection than free curcumin. Sankar et al. (2013b) have demonstrated
that curcumin-nanoparticles show immunomodulatory effects in
arsenic-exposed rats.

On the other hand, Mathews et al. (2012) induced oxidative
stress by treating rats with arsenic trioxide (4 mg/kg) and curcu-
min (15 mg/kg). In this model, curcumin prevents the arsenic
trioxide-induced hepatic dysfunction and oxidative stress by
maintaining the liver antioxidant enzyme status. Thus, curcumin
protects against arsenic-induced hepatic damage scavenging free
radicals, chelating arsenicals compounds or activating Nrf2/
Keap1/ARE pathway.
4. Cadmium hepatotoxicity

The liver is critically damaged by acute or chronic exposure to
cadmium (Souza et al., 1996; Yamano et al., 1999; Casalino et al.,
2006). Acute cadmium exposure has been related to the elevation
in the levels of serum liver enzymes aspartate aminotransferase
(AST), alanine aminotransferase (ALT) and alkaline phosphatase
(ALP) (Kang et al., 2013), hepatic necroinflammation, non-alcoholic
fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH),
fibroplasias and liver-related mortality (Chang et al., 2012; Hyder
et al., 2013). A critical determining factor in cadmium-induced
liver injury is the hepatic concentration of metallothionein (MT)
(Kuester et al., 2002). MT is a low molecular weight, cysteine-rich,
intracellular protein with high affinity for both essential and
non-essential metals (Park et al., 2001). MT forms a complex with
cadmium and reduces its free concentration within the cell, thus
reducing the hepatotoxic potential of cadmium (McKenna et al.,
1996; Klaassen et al., 2009). As the binding capacity of MT becomes
saturated, the increased availability of unbound cadmium initiates
a series of events resulting in cell injury or death (Goering et al.,
1993; Shaikh et al., 1999). Cadmium hepatotoxicity also involves
the binding of Cd2+ to sulfhydryl groups on critical molecules, thiol
group inactivation, oxidative stress (Bucio et al., 1995; Casalino
et al., 2002), mitochondrial permeability transition (Li et al.,
2003), mitochondrial dysfunction (Al-Nasser, 2000), mitochondrial
fragmentation (Xu et al., 2013a,b) and apoptosis (Habeebu et al.,
1998). Secondary injury from acute cadmium exposure occurs
from the activation of Kupffer cells and neutrophil infiltration; pro-
inflammatory cytokines and chemokines have also been implicated
in the toxic process (Sauer et al., 1997; Rikans and Yamano, 2000).
ctive effect of curcumin against heavy metals-induced liver damage. Food
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4.1. Mechanism of action and Nrf2 induction

Cadmium competes with essential metals, that have well-
defined homeostatic uptake and efflux pathways, for the same
transport systems to enter into the cells, disrupting the intracellu-
lar balance of the essential metals and producing toxic effects
(Souza et al., 1997; Ohrvik et al., 2007). Metals susceptible to the
mimetic action of cadmium include calcium, zinc, magnesium
and iron (Martelli et al., 2006). ROS are often implicated in cad-
mium-induced deleterious health effects and HO�, O2

�� and H2O2

have been detected in vivo, which are often accompanied by activa-
tion of redox sensitive transcription factors like nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-jB), activating
protein-1 (AP-1) and Nrf2, and alteration in the expression of ROS
related genes (Patra et al., 2011; Wu et al., 2012). Thus, cadmium
induces tissue injury through oxidative stress, increase in lipid per-
oxidation, alterations in the antioxidant defense system (Jurczuk
et al., 2006; Thijssen et al., 2007), epigenetic changes in DNA
expression, inhibition of heme synthesis, depletion of GSH and
distortion of proteins due to cadmium binding to sulfhydryl groups
(Bernhoft, 2013), disruption of calcium homeostasis (Leffler et al.,
2000; Yuan et al., 2013), impairment of mitochondrial function
(Chávez et al., 1985; Takaki et al., 2004; Cannino et al., 2009) and
apoptosis (Kim et al., 2000).

Activation of Nrf2 by cadmium has been described in rat kidney
cells (Chen and Shaikh, 2009), rat heart (Ferramola et al., 2011),
mouse macrophages (Ishii et al., 2000) and mouse embryonic fibro-
blasts (He et al., 2008). Stewart et al. (2003) identified that treat-
ment of mouse hepatoma (Hepa 1c1c7) cells with cadmium
chloride increased the half-life of Nrf2 by delaying the rate of
Nrf2 degradation. Wu et al. (2012) investigated the role of Nrf2
in cadmium-induced hepatotoxicity in a murine model. Nrf2-null
mice, wild-type mice, Keap1-knockdown mice with enhanced
Nrf2, and Keap1-hepatocyte knockout mice with maximum Nrf2
activation were treated with cadmium chloride. These authors
found that Nrf2 activation prevents cadmium-induced oxidative
stress and liver injury by inducing genes involved in antioxidant
defense rather than genes that scavenge cadmium. Similarly,
Casalino et al. (2006, 2007) showed that in the liver of acutely cad-
mium-intoxicated rats, the activation of the Nrf2 factor was signif-
icantly increased, as well as the ARE-mediated gene expression and
activity of NQO1 and a-GST. This probably occurs through activat-
ing protein kinases that promote the phosphorylation of Nrf2, or by
the interaction of heavy metals with sulfhydryl groups of Keap1
altering the structure of this inhibitor, removing the association
between Nrf2 with Keap1 and consequently activating ARE-medi-
ated gene expression.

4.2. Curcumin hepatoprotection

In several studies in rodents and in vitro models, curcumin has
been shown to have the potential to protect against cadmium
nephrotoxicity (Tarasub et al., 2011; Deevika et al., 2012), immu-
notoxicity (Pathak and Khandelwal, 2008; Alghasham et al.,
2013), lung diseases (Rennolds et al., 2012), reproductive toxicity
(Souza et al., 1996; Salama and El-Bahr, 2007; Oguzturk et al.,
2012; Singh et al., 2012), neurotoxicity (Daniel et al., 2004), colon
toxicity (Singh et al., 2011) and hepatotoxicity. In this context,
Eybl et al. (2004) investigated the preventive effect of curcumin
on cadmium-induced liver damage in rats and mice. Animals
were treated with curcumin (50 mg/kg) and cadmium chloride
(rats 25 lmol/kg and mice 30 lmol/kg). Curcumin ameliorated
the cadmium-induced hepatic lipid peroxidation. However, curcu-
min treatment did not exert any change on GSH levels, probably
because of the relatively low dose of the antioxidant and the
short duration of treatment (3 days). Moreover, they evaluated
Please cite this article in press as: García-Niño, W.R., Pedraza-Chaverrí, J. Prote
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the trace element concentrations in the liver and their results
suggested that curcumin could regulate the status of essential
metals involved in cadmium toxicity, like zinc and iron. In a sec-
ond study, Eybl et al. (2006b) examined the capacity of curcumin
and manganese (Mn) complex of curcumin (Mn–curcumin) to
protect against cadmium-induced oxidative damage. Manganese
was incorporated in the curcumin structure in order to exert
SOD activity and to potentiate the radical scavenging ability
(Vajragupta et al., 2006). Mice were pre-treated with curcumin
or Mn–curcumin (0.14 mmol/kg) and intoxicated with cadmium
chloride (33 lmol/kg). Curcumin and Mn–curcumin effectively
prevented the increase of hepatic lipid peroxidation and attenu-
ated the cadmium-induced decrease in hepatic GSH levels. The
activity of GPx or CAT in liver was unchanged in cadmium-trea-
ted mice. On the other hand, the authors did not find any differ-
ences in cadmium distribution in tissues; neither curcumin nor
Mn–curcumin corrected the changes in the balance of essential
elements caused by cadmium. They also demonstrated that incor-
porating manganese into the curcumin molecule does not poten-
tiate the antioxidant action of curcumin. Later, Eybl et al. (2006a)
designed a comparative study of natural antioxidants against cad-
mium-induced oxidative damage in mice. Animals were treated
with cadmium chloride (7 mg/kg) and curcumin (50 mg/kg), res-
veratrol (20 mg/kg) or melatonin (12 mg/kg). All antioxidants pre-
vented hepatic lipid peroxidation but only curcumin and
melatonin ameliorated the decrease in GSH in cadmium-exposed
mice. The antioxidants completely prevented the cadmium-
induced decrease in hepatic GPx activity, and CAT activity was
maintained only by resveratrol. The accumulation of cadmium
was measured in liver, brain, kidneys and testes and was not
affected by antioxidants pre-treatment. In this case, curcumin
acts as a scavenger rather than as a chelating agent.

In 2008, Tarasub et al. treated rats with cadmium acetate
(200 mg/kg) and co treated with curcumin (250 mg/kg). They
found that curcumin was unable to prevent against cadmium-
induced oxidative damage. But recently, Tarasub et al. (2012) have
reported that curcumin (200 and 400 mg/kg) in combination with
vitamin C (100 mg/kg) can prevent the cadmium-induced oxida-
tive damage, MT expression and liver structural lesions at dose of
5 mg/kg. According to the authors, the combined treatment was
more effective than with either antioxidant alone as a consequence
of the antioxidant/anti-radical properties of curcumin and vitamin
C. Thus, curcumin protects against cadmium-induced hepatic
injury scavenging free radicals. Nevertheless, in these models it
was not determined whether curcumin could act as an indirect
antioxidant and activate the Nrf2/Keap1/ARE pathway and it
remains to be determined if curcumin prevents the decreased
activity of antioxidant enzymes and GSH by activating this
pathway or by acting as a direct antioxidant. Daniel et al. (2004)
demonstrated the chelating capacity of curcumin against cadmium
in rat brain. So it is important to determine whether curcumin has
the same activity in the liver.
5. Chromium hepatotoxicity

Several studies have demonstrated that liver is an organ capable
of being injured by Cr(VI) (Wood et al., 1990) and histopathological
changes such as parenchymatous degeneration, steatosis of hepa-
tocytes and necrosis have been observed (Woźniak et al., 1991;
Kurosaki et al., 1995; Acharya et al., 2001). Cr(VI) hepatotoxicity
is associated with increased ROS levels (Wang et al., 2006;
Patlolla et al., 2009), lipid peroxidation (Bagchi et al., 1995a,
1995b), DNA damage (Yuann et al., 1999), inhibition of DNA, RNA
and protein synthesis (Gunaratnam and Grant, 2008), reduction
of the activity of the antioxidant enzymes (Ueno et al., 1989;
ctive effect of curcumin against heavy metals-induced liver damage. Food
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Anand, 2005; Soudani et al., 2013), mitochondrial damage
(Pourahmad et al., 2001, 2005) including impaired mitochondrial
bioenergetics (Ryberg and Alexander, 1984; Fernandes et al.,
2002), cell growth arrest (Xiao et al., 2012) and apoptosis
(Kalayarasan et al., 2008).

5.1. Mechanism of action and Nrf2 induction

Cr(III) is poorly transported across membranes, while the chro-
mate ion (CrO4)�2, the dominant form of Cr(VI) in neutral, aqueous
solutions and structurally similar to phosphate and sulfate, can be
transported into cells by the anion carrier in cellular membranes
(Alexander and Aaseth, 1995). Inside cells, Cr(VI) is reduced
through reactive intermediates Cr(V), Cr (IV) and to the more sta-
ble Cr(III) by cellular reducers such as GSH, cysteine, ascorbic acid
and riboflavin and NADPH-dependent flavoenzymes, cytochrome
P450 reductases and the mitochondrial electron transport chain
(Jannetto et al., 2001; Pourahmad and O’Brien, 2001; Ueno et al.,
2001). The redox couples Cr(VI)/(V), Cr(V)/(IV), Cr(IV)/Cr(III) and
Cr(III)/(II) have been shown to serve as cyclical electron donors
in a Fenton-like reaction, which generates ROS such as O2

��, H2O2,
OH�, thiyl radicals and carbon-based radicals (Stohs and Bagchi,
1995; Liu and Shi, 2001), leading to genomic DNA damage
(Henkler et al., 2010), oxidative deterioration of lipids and proteins
(Kalahasthi et al., 2006; Myers et al., 2008, 2011), activation of NF-
jB and tumor suppressor protein p53 (Ye et al., 1999; Son et al.,
2010), cell cycle arrest, tyrosine phosphorylation (Bagchi et al.,
2001; Ding and Shi, 2002); mitochondrial damage (Ryberg and
Alexander, 1990; Rudolf et al., 2005; Myers et al., 2010) and apop-
tosis (Pritchard et al., 2000, 2001; Quinteros et al., 2008). Cr(III)
produces damage to cellular proteins, DNA and organelles
(Stearns et al., 2002; Raja and Nair, 2008) and can be lethal to
organisms and their offspring (Bailey et al., 2006).

He et al. (2007) demonstrated in Hepa 1c1c7 and mouse embry-
onic fibroblasts cells that Nrf2 protects cells against both apoptosis
and ROS production induced by Cr(VI) by the activation of Keap1/
Nrf2/ARE. They showed that Nrf2 and Keap1 were ubiquitinated in
the cytoplasm and translocated into the nucleus in association
with each other. But, both proteins were deubiquitinated upon
nuclear translocation. Finally, treatment with Cr(VI) disrupted
the Nrf2/Keap1 association in the nucleus, Nrf2 was recruited to
the ARE inducing the cytoprotective genes HO-1 and NQO1 expres-
sion. Keap1 is shuttled back to the cytoplasm assisting a new round
of Nrf2 ubiquitination and activation. It is noteworthy to mention
that O’Hara et al. (2006) suggested that Cr(VI) silences induction of
ARE-driven genes required for protection from secondary insults in
human bronchial epithelial cells. On other side, Kalayarasan et al.
(2008) found that potassium dichromate induces a slight activa-
tion of Nrf2 in the hepatocytes of Wistar rats.

5.2. Curcumin hepatoprotection

Curcumin has demonstrated protective effects against Cr(VI)-
induced toxicity in male reproductive system (Chandra et al.,
2007; Devi et al., 2012), kidney (Molina-Jijón et al., 2011) and liver
of rodents. Recently, we studied the hepatoprotective effects of
curcumin against chromium-induced damage (García-Niño et al.,
2013). In rats, we administered curcumin (400 mg/kg) and potas-
sium dichromate (15 mg/kg) and we found that curcumin success-
fully prevented the Cr(VI)-induced liver injury by reducing
hepatocyte damage and the histological alterations, ameliorating
lipid and protein oxidation, maintaining the activity of SOD, CAT,
GPx, GR and GST, protecting against mitochondrial dysfunction
and avoiding the membrane permeability transition pore opening.
Apparently, these protective effects of curcumin against chro-
Please cite this article in press as: García-Niño, W.R., Pedraza-Chaverrí, J. Prote
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mium-induced liver injury are a consequence of its scavenging
activity. Previously, Molina-Jijón et al. (2011) demonstrated that
curcumin did not chelate chromium using an in vitro system.
6. Copper hepatotoxicity

The liver accounts for approximately 8% of the total amount of
copper in the body and represents the tissue with the highest cop-
per concentration (Luza and Speisky, 1996). In this context too low
concentrations of copper in tissues induce anemia and too high
concentrations induce hepatic damage, however, copper levels in
tissues are normally well regulated in healthy animals (Hogstad,
1996). Copper contained in food is absorbed into the portal vein
and then loaded into hepatocytes. There, the Cu2+ transporting beta
polypeptide ATPase (ATP7B) mediates the secretion on one side
into the bile and on the other into the bloodstream after linkage
to ceruloplasmin, a protein responsible for organized delivery into
all tissues (Dijkstra et al., 1996; Tao and Gitlin, 2003; Zhang et al.,
2011; Fieten et al., 2012). Chronic copper accumulation in the liver
causes hepatitis leading to hepatic failure, pericentral hepatic
necrosis, cholestasis, cirrhosis and ultimately death (Chuttani
et al., 1965; Hébert et al., 1993; Giuliodori et al., 1997). The hepa-
tocyte cytotoxic mechanisms for copper involve ROS formation,
GSH oxidation, lipid peroxidation (Stacey and Klaassen, 1981;
Sokol et al., 1994) and mitochondrial dysfunction (Nakatani et al.,
1994; Pourahmad and O’Brien, 2000).
6.1. Mechanism of action and Nrf2 induction

The common oxidation states for copper are Cu(I) and Cu(II) and
the easy exchange between these two oxidation states endows cop-
per with redox properties that may be of an essential or deleterious
nature in biological systems (Peña et al., 1999). The major functions
of copper-biological molecules involve oxidation–reduction reac-
tions in which they react directly with molecular oxygen to produce
HO� from H2O2 and O2

�� via the Fenton and Haber–Weiss reactions
which may cause oxidative damage (Gaetke, 2003; Tisato et al.,
2010). Copper-induced ROS are important contributing factors in
cellular damage that includes lipid peroxidation in membranes,
direct oxidation of proteins, and cleavage of DNA and RNA mole-
cules (Peña et al., 1999). Besides, excess cellular copper can disrupt
normal cell metabolism by displacing other ions at their metal
binding sites or through non-specific binding to enzymes, DNA,
and other biomolecules (Alt et al., 1990). Also, copper ions partici-
pate in the auto-oxidation of sulfhydryl groups and in the depletion
of GSH (Hultberg et al., 1998). Mitochondria are particularly sensi-
tive to oxidative damage because of the excess copper and the
resulting oxyradicals may overwhelm cellular defensive mecha-
nisms, compromising respiratory function and further impairing
cellular health and survival (Collins et al., 2010).

The induction of Nrf2 mediated by copper has been described in
human peripheral blood monocyte-derived macrophages and mur-
ine macrophages (RAW264.7) (Calay et al., 2010), human mam-
mary ARE-reporter cell line (AREc32) (Wang et al., 2010), and
fetal lung human diploid fibroblasts (Wi-38) (Boilan et al., 2013).
Muller et al. (2007) identified genes that provide insight into the
adaptive transcriptional response to copper overload-induced oxi-
dative stress in HepG2 cells. They detected increased expression of
genes involved in the formation of GSH, GCLM and GCLC, and HO-1
via the transcription factor Nrf2. Korashy and El-Kadi (2006),
observed that Cu2+ inhibited the constitutive and inducible expres-
sion of NQO1 and GST Ya in Hepa 1c1c7 cells, however Cu2+ treat-
ment did not alter Nrf2 levels. On the other hand, Piret et al. (2012)
studied the toxic effects of copper(II) oxide nanoparticles in HepG2
ctive effect of curcumin against heavy metals-induced liver damage. Food
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cells. Transcriptomic data, siRNA knockdown and DNA binding
activities suggested that nanoparticles induced activation Nrf2.

6.2. Curcumin hepatoprotection

Protective effects of curcumin against copper-induced toxicity
have been studied for genotoxicity (Urbina-Cano et al., 2006;
Corona-Rivera et al., 2007), neurotoxicity (Baum and Ng, 2004;
Zhao et al., 2010) and liver damage. Wan et al. (2007), in a Wilson
disease model, an autosomal recessive disorder of copper metabo-
lism with neuropsychiatric and hepatic symptoms, explored the
protective effects of curcumin in copper-overloaded rats. Animals
were fed with forage containing copper sulfate (1 g/kg) and in
drinking water (0.185%), they were also co-administered curcumin
(50 or 200 mg/kg). They observed that in relation to copper-
overloaded rats, treatment with curcumin ameliorated lipid perox-
idation, recovered the GSH and SOD levels, decreased apoptosis,
down-regulated the expression and content of proinflammatory
cytokines TNF-a and IL-8 and improved the histological changes
induced by copper in liver. This protective effect was explained
by the antioxidant and anti-apoptotic properties, in a similar way
as has been described in the model of iron overload (Thephinlap
et al., 2009; Messner et al., 2010; Qian et al., 2012).

Wan and Luo (2007) demonstrated that curcumin prevented
the oxidative damage and the apoptosis induction in Buffalo rat
liver cells (BRL) treated with 100 lmol/L of copper sulfate by
reducing ROS and inhibiting c-Jun N-terminal protein kinases
(JNK) expression. JNK and p38 are kinases strongly activated by
extra- or intracellular stress and inflammatory cytokines that pro-
mote the inhibition of cell growth or promotion of cell death (Guo
et al., 1998), and curcumin can modulate p38- and JNK-MAPK
pathways (Yu et al., 2010; Fan et al., 2012; Topcu-Tarladacalisir
et al., 2013). Kou et al. (2013) also recognized the protective effect
of curcumin against copper-mediated LDL oxidation because of the
upregulation of HO-1, GCLM and CD36 expression in undifferenti-
ated THP-1 cells, suggesting the possible involvement of Keap1/
Nrf2/ARE pathway. Thus, curcumin protects against copper-
induced hepatic damage by scavenging free radicals, and upregu-
lating the Nrf2/Keap1/ARE pathway. It remains to be determined
if there is a possible chelating activity of curcumin against copper
hepatotoxicity, as has been previously suggested by Baum and Ng
(2004) for copper neurotoxicity.

7. Lead hepatotoxicity

The histopathological alterations that have been described after
chronic lead exposure are anisokaryosis, nuclear vesiculation,
binucleation, cytoplasmic inclusions and swelling, hydropic degen-
eration, reduction in glycogen content (Jarrar and Taib, 2012), por-
tal inflammatory cell infiltration (El-Neweshy and El-Sayed, 2011),
steatosis, apoptosis and mild fibrosis (Shalan et al., 2005), biliary
hyperplasia, edema, congestion and apoptotic and necrotic cells
(Mehana et al., 2012).

Acute lead exposure in rodents and in vitro models involves a
decrease in hepatic CYP450 content (Degawa et al., 1994;
Korashy and El-Kadi, 2012), inhibition of heme synthetic pathway
(Lake and Gerschenson, 1978; Jaffe et al., 2001), alterations in
hepatic cholesterol metabolism (Kojima et al., 2004; Ademuyiwa
et al., 2009), ROS generation, lipid peroxidation (Sandhir and Gill,
1995; Pandya et al., 2010), suppression of activity of antioxidant
enzymes and decrease in GSH levels (Daggett et al., 1997, 1998;
Korashy and El-Kadi, 2006; Liu et al., 2011), mitochondrial dys-
function (Wielgus-Serafińska et al., 1980; Bragadin et al., 1998,
2007; Pal et al., 2013), oxidative DNA damage (Hernández-Franco
et al., 2011; Narayana and Al-Bader, 2011) and apoptosis
(Pagliara et al., 2003; Mukherjee et al., 2013).
Please cite this article in press as: García-Niño, W.R., Pedraza-Chaverrí, J. Prote
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7.1. Mechanism of action and Nrf2 induction

Lead causes oxidative stress by inducing the generation of ROS,
like HO�, O2

��, H2O2, 1O2, hydroperoxides (HO2
� ) and lipid peroxides

(LPO�) (Valverde et al., 2001; Flora et al., 2004), by reducing the
antioxidant defense system of cells via depleting GSH, inhibiting
sulfhydryl dependent enzymes or activity of antioxidant enzymes
(Gurer and Ercal, 2000; Patil et al., 2006; Patrick, 2006) and/or
increasing susceptibility of cells to oxidative attack by altering
membrane integrity and fatty acid composition. Another mecha-
nism of free radical generation and adduct formation may involve
aminolevulinic acid (ALA), the heme precursor whose levels are
elevated by lead exposure through feedback inhibition of the
enzyme d-aminolevulinic acid dehydrogenase (ALAD). As lead,
ALA has the tendency to bind to sulfhydryl groups and thus results
in overproduction of ROS (Rahman and Sultana, 2006; Gillis et al.,
2012). Moreover, lead is able to substitute for other bivalent cat-
ions like Ca2+, Mg2+, Fe2+, Zn2+ and monovalent cations like Na+,
affecting various fundamental biological processes like intra- and
intercellular signaling, cell adhesion, protein folding and matura-
tion, apoptosis, ionic transportation, enzyme regulation or release
of neurotransmitters (Aboul-Soud et al., 2011; Flora et al., 2012).

Korashy and El-Kadi (2006) were the first to identify that Pb2+

and Hg2+ regulate the expression of Nqo1 and Gstya genes through
Nrf2-ARE-dependent transcriptional mechanisms, inducing the
expression of NQO1 and GST Ya mRNAs in a time-dependent man-
ner in Hepa 1c1c7 cells. Recently, Wang et al. (2013a,b) showed
evidence supporting the up-regulation of Nrf2 and MRP1 in
response to lead-induced oxidative and electrophilic stress in rat
testes. MRP1 is a plasma membrane glycoprotein that can confer
multidrug resistance by increased export of drugs from the cell
resulting in a decreased intracellular drug concentration (Zaman
et al., 1995).

7.2. Curcumin hepatoprotection

Curcumin has shown protective effects in rodents against lead
neurotoxicity (Shukla et al., 2003; Daniel et al., 2004; Dairam
et al., 2007), cardiotoxicity (Asali et al., 2011; Roshan et al.,
2011a, 2012), nephrotoxicity (Farzanegi et al., 2012; Ghoniem
et al., 2012; Sangartit et al., 2012), immunotoxicity (El-Sherbiny
et al., 2010), bone disease (Roshan et al., 2011b) and hepatotoxic-
ity. El-Ashmawy et al. (2006) studied the hepatoprotective poten-
tial of turmeric powder against lead-induced liver toxicity by
feeding mice with a diet supplemented with lead acetate (0.5%)
and turmeric (1% or 5%). Turmeric co-treatment prevented the
decrease in the GST activity and ameliorated lipid peroxidation,
but the level of GSH was slightly decreased in liver. Due to its
content of polyphenolic compounds, like curcumin, two possible
mechanisms were proposed by which turmeric could protect liver,
by scavenging ROS and chelating this toxic metal. Also, turmeric
protects against lead-induced genotoxicity in bone marrow
chromosomes.

On the other hand, Memarmoghaddam et al. (2011) determined
the effect of exercise training and curcumin supplementation on
lead-induced oxidative damage in liver. Mice performed progres-
sive running training sessions and they received curcumin solution
(30 mg/kg) and lead acetate (20 mg/kg). In this way, curcumin,
endurance training and the combination reduce the heat shock
protein levels and lipid peroxidation generated by lead exposure.
These authors suggested that aerobic exercise and anti-oxidant
supplements might have beneficial effects for health. Recently,
Flora et al. (2013) evaluated the protective efficacy of curcumin
and nanocurcumin against lead-induced toxicity in blood, liver,
kidney and brain. Mice were co-administered lead acetate
(25 mg/kg) and curcumin (15 mg/kg) or nanocurcumin (15 mg/
ctive effect of curcumin against heavy metals-induced liver damage. Food
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kg). In liver, curcumin and nanocurcumin showed beneficial effects
by protecting against lipid peroxidation, protein oxidation and
restoring altered ROS levels, GSH and glutathione disulfide (GSSG).
Interestingly, the hepatoprotection by curcumin and nanocurcu-
min was similar. In contrast, lead concentration was determined
in liver tissue and it was found that curcumin and nanocurcumin
both reduced lead content, but that nanocurcumin showed a
greater chelating effect than curcumin. It is worth mentioning that
in blood, curcumin and nanocurcumin re-established ALAD activity
and the protective effects in kidney and brain were similar, nano-
curcumin being more effective than curcumin. Thus, the scaveng-
ing and chelating properties of curcumin seems to be mainly
Fig. 5. Protective effect of curcumin against heavy-metals induced-hepatic damage. A
superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione r
species (ROS), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), antioxidant responsive
(HSC), mitochondrial membrane potential (DWm), metallothionein (MT), tumor necrosi

Please cite this article in press as: García-Niño, W.R., Pedraza-Chaverrí, J. Prote
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responsible for the protective effect against lead-induced hepato-
toxicity. It has also been demonstrated that increasing curcumin’s
bioavailability will make a more effective hepatoprotective agent.
However, it remains unclear whether curcumin can activate
Nrf2/Keap1/ARE pathway in models of hepatotoxicity caused by
lead poisoning.
8. Mercury hepatotoxicity

Hepatocellular effects described for mercury are elevated serum
ALT, ornithine carbamyltransferase and serum bilirubin levels,
rsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb),
eductase (GR), glutathione-S-transferase (GST), glutathione (GSH), reactive oxygen
element (ARE), Kelch-like ECH-associated protein 1 (Keap1), hepatic stellate cells

s factor-a (TNF-a) and interleukin-8 (IL-8).

ctive effect of curcumin against heavy metals-induced liver damage. Food
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hepatomegaly and centrilobular hepatic steatosis, decrease in the
synthesis of hepatic coagulation factors (Kanluen and Gottlieb,
1991; Ashour et al., 1993; Joshi et al., 2011, 2012; Cao et al.,
2012), decreased activity of metabolic enzymes (Chang et al.,
1973), increase in lipid peroxidation products (Stacey and
Kappus, 1982; Benov et al., 1990; Huang et al., 1996; Lin et al.,
1996), mitochondrial dysfunction (Belyaeva et al., 2011), prolifera-
tion of the endoplasmic reticulum, floccular degeneration of the
hepatic mitochondria with extrusion of degenerated hepatic
organelles and cytoplasmic debris into the sinusoidal space and
engulfed by Kupffer cells and vacuolar degeneration of the mito-
chondria in the Kupffer cells (Chang and Yamaguchi, 1974;
Desnoyers and Chang, 1975a,b).

8.1. Mechanism of action and Nrf2 induction

Exposure to mercury compounds induces oxidative stress
(Atchison and Hare, 1994; Mahboob et al., 2001; Gutierrez et al.,
2006; Al-azzawie et al., 2013; Farina et al., 2013). Mercury induces
the formation of H2O2, ROO� and HO� that may cause cell membrane
damage and cell death (Miller et al., 1991; Hussain et al., 1999),
inhibition of the activity of antioxidant enzymes such as CAT, SOD
and GPx (Benov et al., 1990; Sener et al., 2007; Franco et al.,
2009; Pal and Ghosh, 2012), depletion of GSH, decrease of the sulf-
hydryl groups of proteins (Hultberg et al., 1998, 2001; Farina et al.,
2011; Bridges et al., 2012), interference with enzyme functions and
disturbance in both protein synthesis and energy production (Zahir
et al., 2006; Castro-González and Méndez-Armenta, 2008;
Ragunathan et al., 2010; Amara and El-Kadi, 2011). The mitochon-
drion is a primary target of mercury-induced injury and the mito-
chondrial electron transport chain is the most likely site where
excess ROS are generated to induce oxidative stress in mercury tox-
icity (Yee and Choi, 1996). Mitochondrial effects of mercury in vivo
and in vitro, include mitochondrial dysfunction (Chávez and
Holguín, 1988; Chávez et al., 1989; Hare and Atchison, 1992;
Dreiem et al., 2005; Hernández-Esquivel et al., 2011), membrane
permeability transition pore opening (Limke and Atchison, 2002;
Polunas et al., 2011) and apoptosis (Shenker et al., 1999; Kim and
Sharma, 2004; Humphrey et al., 2005).

In contrast with Cu2+ treatment, it has been described that mer-
cury increases Nrf2 levels in human monocytes (Wataha et al.,
2008). Korashy and El-Kadi (2006) identified that Hg2+ and Pb2+

regulate the expression of Nqo1 and Gstya genes through Nrf2/
Keap1/ARE pathway in Hepa 1c1c7 cells. Later, Amara and
El-Kadi (2011) examined the effect of Hg2+ on the expression of
NQO1 in HepG2 cells. In this case, Hg2+ treatment increased
activity, protein, and mRNA of NQO1, which was associated with
increased nuclear accumulation of Nrf2 protein and ARE activation.

8.2. Curcumin hepatoprotection

Despite the fact that curcumin has the potential to prevent or
protect against noxious effects induced by heavy metals, its poten-
tially protective role against mercury toxicity has been poorly
studied. Agarwal et al. (2010) demonstrated that curcumin
(80 mg/kg) pretreatment and post-treatment had a protective
effect on mercury-induced oxidative stress in the liver, kidneys
and brain of rats treated with mercuric chloride (12 lmol/kg).
Moreover, curcumin reestablished the antioxidant enzyme activi-
ties, reversed mercury-induced liver and kidney injury markers
and modified the expression of metallothionein mRNA. Also, cur-
cumin chelates mercury in this model by reducing its concentra-
tion in these tissues. However, mercury-induced histological
alterations were not prevented by curcumin treatment. Appar-
ently, curcumin protects against mercury-induced hepatic damage
Please cite this article in press as: García-Niño, W.R., Pedraza-Chaverrí, J. Prote
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by scavenging free radicals and chelating this metal. Furthermore,
it is important to evaluate the participation of Nrf2/Keap1/ARE
pathway as a protective mechanism induced by curcumin.

9. Summary and conclusions

Heavy metals are persistent and widespread pollutants that
affect the structure and function of several organs by generating
oxidative stress. Liver is a sensitive organ affected by arsenic,
cadmium, chromium, copper, lead and mercury exposure. How-
ever, the antioxidant, anti-inflammatory, anti-fibrogenic and anti-
carcinogenic activities of curcumin may confer therapeutic efficacy
against different environmental or occupational hepatic toxins. In
this manner, curcumin can protect against the toxic effects of
heavy metals on the liver by reducing the structural damage, pre-
venting lipid peroxidation, avoiding GSH depletion, maintaining
the activity of SOD, CAT, GPx, GR, GST and NQO1 and protecting
against the following liver mitochondrial alterations: oxidative
phosphorylation-disruption, decrease in the cellular ATP levels,
mitochondrial permeability transition, calcium homeostasis dis-
ruption and apoptosis (Fig. 5). These protective effects of curcumin
were attributed to its ability to scavenge free radicals, to act as a
chelating agent and/or its capacity to induce detoxifying enzymes
by upregulation of the Keap1/Nrf2/ARE pathway (Fig. 4). In addi-
tion, curcumin down-regulated NF-jB as well as the expression
and content of proinflammatory cytokines preventing noxious
effects induced by heavy metals in the liver. In addition, the devel-
opment of new strategies or technologies that improves curcu-
min’s bioavailability could result in greater protection against
liver damage caused by these agents. Another field that has not
been studied in depth is related to the role of curcumin as a protec-
tive agent against mitochondrial dysfunction induced directly or
indirectly by the oxidative stress generated by heavy metals.
Despite the great potential of curcumin to prevent heavy metals-
induced hepatotoxicity, the number of studies is still limited. As
a result, additional research about physiological, cellular and
molecular mechanisms involved in curcumin hepatoprotection
are needed, in order to propose it as a potential therapeutic agent
against oxidative damage generated by exposure to heavy metals.
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Çıkrıkçı, S., Mozioğlu, E., Yılmaz, H., 2008. Biological activity of curcuminoids
isolated from Curcuma longa. Rec. Nat. Prod. 2, 19–24.

Collins, S., Mccoy, K., Catapane, E., Carroll, M., 2010. The effects of copper and copper
blocking agents on gill mitochondrial O2 utilization of Crassostrea virginica. In
Vivo (Brooklyn) 32, 14–19.

Copple, I.M., Goldring, C.E., Kitteringham, N., Park, B.K., 2008. The Nrf2-Keap1
defence pathway: role in protection against drug-induced toxicity. Toxicology
246, 24–33.

Cordova, E., Valenzuela, O., Sánchez-Peña, L., Escamilla-Guerrero, G., Hernández-
Zavala, A., Orozco, L., Razo, L., 2013. Nuclear factor erythroid 2-related factor
gene variants and susceptibility of arsenic-related skin lesions. Hum. Exp.
Toxicol.

Corona-Rivera, A., Urbina-Cano, P., Bobadilla-Morales, L., Vargas-Lares, J., Ramirez-
Herrera, M., Mendoza-Magaua, M., Troyo-Sanroman, R., Diaz-Esquivel, P.,
Corona-Rivera, J., 2007. Protective in vivo effect of curcumin on copper
genotoxicity evaluated by comet and micronucleus assays. J. Appl. Genet. 48,
389–396.

Correa, F., Buelna-Chontal, M., Hernández-Reséndiz, S., García-Niño, W.R., Roldán,
F.J., Soto, V., Silva-Palacios, A., Amador, A., Pedraza-Chaverrí, J., Tapia, E.,
Zazueta, C., 2013. Curcumin maintains cardiac and mitochondrial function in
chronic kidney disease. Free Radic. Biol. Med. 61, 119–129.

Cruz-Correa, M., Shoskes, D.A., Sanchez, P., Zhao, R., Hylind, L.M., Wexner, S.D.,
Giardiello, F.M., 2006. Combination treatment with curcumin and quercetin of
adenomas in familial adenomatous polyposis. Clin. Gastroenterol. Hepatol. 4,
1035–1038.
Please cite this article in press as: García-Niño, W.R., Pedraza-Chaverrí, J. Prote
Chem. Toxicol. (2014), http://dx.doi.org/10.1016/j.fct.2014.04.016
Cullinan, S.B., Gordan, J.D., Jin, J., Harper, J.W., Diehl, J.A., 2004. The Keap1-BTB
protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative
stress sensing by a Cul3-Keap1 ligase. Mol. Cell. Biol. 24, 8477–8486.

Daggett, D.A., Nuwaysir, E.F., Nelson, S.A., Wright, L.S., Kornguth, S.E., Siegel, F.L.,
1997. Effects of triethyl lead administration on the expression of glutathione S-
transferase isoenzymes and quinone reductase in rat kidney and liver.
Toxicology 117, 61–71.

Daggett, D.A., Oberley, T.D., Nelson, S.A., Wright, L.S., Kornguth, S.E., Siegel, F.L.,
1998. Effects of lead on rat kidney and liver: GST expression and oxidative
stress. Toxicology 128, 191–206.

Dairam, A., Limson, J.L., Watkins, G.M., Antunes, E., Daya, S., 2007. Curcuminoids,
curcumin, and demethoxycurcumin reduce lead-induced memory deficits in
male Wistar rats. J. Agric. Food Chem. 55, 1039–1044.

Dairam, A., Fogel, R., Daya, S., Limson, J.L., 2008. Antioxidant and iron-binding
properties of curcumin, capsaicin, and S-allylcysteine reduce oxidative stress in
rat brain homogenate. J. Agric. Food Chem. 56, 3350–3356.

Daniel, S., Limson, J.L., Dairam, A., Watkins, G.M., Daya, S., 2004. Through metal
binding, curcumin protects against lead- and cadmium-induced lipid
peroxidation in rat brain homogenates and against lead-induced tissue
damage in rat brain. J. Inorg. Biochem. 98, 266–275.

Das, L., Vinayak, M., 2012. Anti-carcinogenic action of curcumin by activation of
antioxidant defence system and inhibition of NF-jB signalling in lymphoma-
bearing mice. Biosci. Rep. 32, 161–170.

Das, S., Santra, A., Lahiri, S., Guha Mazumder, D., 2005. Implications of oxidative
stress and hepatic cytokine (TNF-alpha and IL-6) response in the pathogenesis
of hepatic collagenesis in chronic arsenic toxicity. Toxicol. Appl. Pharmacol. 204,
18–26.

Das, N., Paul, S., Chatterjee, D., Banerjee, N., Majumder, N., Sarma, N., Sau, T., Basu, S.,
Banerjee, S., Majumder, P., Bandyopadhyay, A., States, J., Giri, A., 2012. Arsenic
exposure through drinking water increases the risk of liver and cardiovascular
diseases in the population of West Bengal, India. BMC Public Health 12, 639.

Deevika, B., Asha, S., Taju, G., Nalini, T., 2012. Cadmium acetate induced
nephrotoxicity and protective role of curcumin in rats. Asian J. Pharm. Clin.
Res. 5, 186–188.

Degawa, M., Arai, H., Kubota, M., Hashimoto, Y., 1994. Ionic lead, a unique metal ion
as an inhibitor for cytochrome P450IA2 (CYP1A2) expression in the rat liver.
Biochem. Biophys. Res. Commun. 200, 1086–1092.

Deodhar, S.D., Sethi, R., C, SR., 1980. Preliminary study on antirheumatic activity of
curcumin (diferuloyl methane). Indian J. Med. Res. 71, 632–634.

Desnoyers, P.A., Chang, L.W., 1975a. Ultrastructural changes in rat hepatocytes
following acute methyl mercury intoxication. Environ. Res. 9, 224–239.

Desnoyers, P.A., Chang, L.W., 1975b. Ultrastructural changes in the liver after
chronic exposure to methylmercury. Environ. Res. 10, 59–75.

Devi, K.R., Mosheraju, M., Reddy, K.D., 2012. Curcumin prevents chromium induced
sperm characteristics in mice. IOSR J. Pharm. 2, 312–316.

Dhillon, N., Aggarwal, B.B., Newman, R.A., Wolff, R.A., Kunnumakkara, A.B.,
Abbruzzese, J.L., Ng, C.S., Badmaev, V., Kurzrock, R., 2008. Phase II trial of
curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res. 14,
4491–4499.

Dhule, S.S., Penfornis, P., Frazier, T., Walker, R., Feldman, J., Tan, G., He, J., Alb, A.,
John, V., Pochampally, R., 2012. Curcumin-loaded c-cyclodextrin liposomal
nanoparticles as delivery vehicles for osteosarcoma. Nanomed. Nanotechnol.,
Biol. Med. 8, 440–451.

Dijkstra, M., van den Berg, G., Wolters, H., Ińt Veld, G., Slooff, M., Heymans, H.,
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